15 open source tools that every data scientist should learn

A versatile and widely used programming language with a vast ecosystem of data science libraries. 

Python 

 A powerful language for statistical computing and graphics. 

R: 

 A standard language for querying and manipulating data in relational databases. 

SQL: 

 A web application for creating and sharing documents that contain live code, equations, visualizations, and narrative text. 

Jupyter Notebook: 

 A Python library for data manipulation and analysis. 

Pandas: 

NumPy: A Python library for working with arrays. 

NumPy: 

Matplotlib: A Python library for creating visualizations. 

Matplotlib: 

 A Python library for machine learning. 

Scikit-learn: 

 A Python library for deep learning. 

TensorFlow: 

 A Python library for deep learning. 

PyTorch: 

 A unified analytics engine for large-scale data processing. 

Spark: 

A distributed computing framework for processing large datasets. 

Hadoop:  

 A platform for programmatically scheduling and monitoring workflows. 

Airflow: 

 A tool for transforming data in warehouses. 

DBT (Data Build Tool): 

 A workflow orchestration tool for managing data pipelines. 

Prefect: